

Product Specification

500Mbps 850nm optical receiver module

MPD6205-405 MPD6205-415

PRODUCT FEATURES

- High performance GaAs PIN photodiode
- with separate trans-impedance amplifier
- Data rates up to 500Mbps
- Separate detector bias pin power monitoring
- Low power dissipation

The MPD6205-405 uses a high-performance GaAs PIN photo-detector packaged with a trans impedance amplifier designed to meet performance requirements for 500Mbps data communication over multi-mode optical fiber at 850nm. Applications include Ethernet, Fiber Channel and ATM protocols. The optical assembly is designed to interface either 50um or 62.5um multimode fiber.

PRODUCT SELECTION

Part Number	Description
MPD6205-405	ST, with separate PD bias
MPD6205-415	FC, with separate PD bias

I. Absolute Maximum Ratings

Parameter	Rating				
Storage Temperature	-40 to +95°C				
Case Operating Temperature	-20 to +95°C				
Lead Solder Temperature	260°C, 10 sec.				
Power Supply Voltage	-0.3V to 24V				
PIN Voltage	10V				
Incident Optical Power	+3 dBm average,+6 dBm peak				
ESD Exposure (Human Body Model)	225V				

Notice

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

Notice

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product

II. Electro-Optical Characteristics (Vcc =3.3V, AC coupled to 50W (100W differential),
20°C < TA <92°C unless otherwise specified)

Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Data Rate		DR			8.5	uW	1
Input Optical Wavelength	0 °C to 70 °C	$\lambda_{\rm P}$	830	850	870	nm	
Supply Voltage			2.79	3.3	3.63	V	
Supply Current	$P_R = 0uW, R_L = 50W AC$	Icc		35	50	mA	
	coupled						
PD Bias Voltage		V _{PD_Bias}	3	3.3	3.6	V	
Photodiode Responsivity	$P_R = -12 dBm$	R _{esp}	0.45	0.5	0.6	A/W	
Active Area (diameter)				40		um	
Optical Return Loss	$P_R = -12 dBm$	ORL	12			dB	
Differential Output Voltage	$P_{R,OMA}$ = -12Bm,	V _{o(pk-pk)}	150	260	330	mV	2,3
Swing	AC Coupled to R _L =50W						
Differential Responsivity	$P_{R,OMA} = -12 dBm$,	Т	2300	3000	5300	V/W	2,3
	AC Coupled to R _L =50W						
Output Impedance		Z _{OUT}	40	50	60	W	
Sensitivity, OMA	DR = 500Mbps	S		-19	-16	dBm	4
Rise/Fall Time	$P_{R,OMA} = -12 dBm, (20\% -$	T_R/T_F		-0.2	50	ps	2,5
	80%)						
Group Delay	Measured from S21	GVD	-50	30	50	ps	7
	Phase						
Power Supply Rejection	$P_R = 0uW$ (Dark), Freq =	PSRR	20			dB	1,6
Ratio	1000MHz						
Deterministic Jitter	P _{R,OMA} =-12dBm	DJTIA	100	20	40	ps	8
	RL=50 W AC						
Random Jitter	P _{R,OMA} =-12dBm	RJTIA		3	5	ps	9
	$R_L=50 \text{ W AC}$						

Notes:

- 1. P_R is the average optical power at the fiber face.
- P_{R,OMA} is the peak to peak optical power at the fiber face (Optical Modulation Amplitude) 2. $P_{R,CMA} = \frac{2P_R(ER-1)}{2P_R(ER-1)}$

ER+1where ER is the extinction ratio (linear) of the optical source.

- 3. Bandwidth and Low Frequency Cutoff are measured with a small signal sinusoidal light source with -10dBm average power
- 4. Sensitivity is measured with an optical source with an extinction ratio of 3dB. For sensitivity measurements at 2 and 4Gbps, bandwidth limiting of the TIA is assumed to be implemented at the front end of the post amplifier.
- 5. Rise/Fall times are corrected for optical source Rise/Fall times. $T^{2}_{TIA} = T^{2}_{MEASURED} T^{2}_{OPTICAL}$
- 6. Value shown is with no external power supply filtering.
- Group delay is a sensitive measurement to package interface, and includes the effects of PD, TIA 7.

and package. Measurement is made with TO leads as short as possible.

- 8. DJTIA is specified as contributed DJ by the TIA, obtained from $DJ^2_{tia} = DJ^2_{total} DJ^2_{optical}$
- 9. RJTIA is specified as contributed DJ by the TIA, obtained from $RJ^{2}_{tia} = RJ^{2}_{total} RJ^{2}_{optical}$
- 10. The electrical performance of the ROSA is dependent upon the quality of the electrical connection between the TO can and the circuit board. AOC cannot guarantee all performance specifications for parts without the flex circuit attached.

III. Environmental Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	Top	-20		95	°C	
Storage Temperature	Tsto	-40		95	°C	

IV. Mechanical Specifications

(Dimensions are in mm)

PIN	Description
1	Case
2	PDK
3	PDA

